Telegram Group & Telegram Channel
🎲 Ликбез по теореме Байеса

Мы используем теорему Байеса, когда хотим вычислить, как новые наблюдения влияют на наше понимание мира. Допустим, у нас есть некоторое событие, вероятность которого мы знаем. Теперь мы получили новые данные, которые как-то связаны с этим событием. Как изменится вероятность события после этих наблюдений? Это и есть главный вопрос, на который можно ответить, воспользовавшись формулой с картинки👆

✍️ Пример

Представим, что вы хотите узнать вероятность того, что человек болен гриппом (событие A), если он чихает (событие B). Вы знаете, что:
▪️Вероятность того, что человек чихает, если у него грипп, составляет 90% (P(B|A) = 0.9).
▪️Вероятность чихания для всех людей — 10% (P(B) = 0.1).
▪️Вероятность того, что человек болен гриппом — 1% (P(A) = 0.01).

Подставив это всё в формулу, получаем ответ 0.09, или 9%.

👀 Так, теорема Байеса отвечает за переход от априорной вероятности (до наблюдения) к апостериорной вероятности (после наблюдения).



tg-me.com/dsproglib/5572
Create:
Last Update:

🎲 Ликбез по теореме Байеса

Мы используем теорему Байеса, когда хотим вычислить, как новые наблюдения влияют на наше понимание мира. Допустим, у нас есть некоторое событие, вероятность которого мы знаем. Теперь мы получили новые данные, которые как-то связаны с этим событием. Как изменится вероятность события после этих наблюдений? Это и есть главный вопрос, на который можно ответить, воспользовавшись формулой с картинки👆

✍️ Пример

Представим, что вы хотите узнать вероятность того, что человек болен гриппом (событие A), если он чихает (событие B). Вы знаете, что:
▪️Вероятность того, что человек чихает, если у него грипп, составляет 90% (P(B|A) = 0.9).
▪️Вероятность чихания для всех людей — 10% (P(B) = 0.1).
▪️Вероятность того, что человек болен гриппом — 1% (P(A) = 0.01).

Подставив это всё в формулу, получаем ответ 0.09, или 9%.

👀 Так, теорема Байеса отвечает за переход от априорной вероятности (до наблюдения) к апостериорной вероятности (после наблюдения).

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/5572

View MORE
Open in Telegram


Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

Telegram is riding high, adding tens of million of users this year. Now the bill is coming due.Telegram is one of the few significant social-media challengers to Facebook Inc., FB -1.90% on a trajectory toward one billion users active each month by the end of 2022, up from roughly 550 million today.

A Telegram spokesman declined to comment on the bond issue or the amount of the debt the company has due. The spokesman said Telegram’s equipment and bandwidth costs are growing because it has consistently posted more than 40% year-to-year growth in users.

Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение from sg


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA